

Direct Fired Vapour Absorption Chiller

Vision

To be a globally respected high performance organization offering sustainable solutions in energy and environment.

Sustainable Solutions

From Cooling to Heating, from Power Generation to Air Purification, from Water and Sewage Treatment to Speciality Chemicals, THERMAX Solutions are improving life at work in many ways.

Every year THERMAX helps generate 6,000 MW of Power, produce 100,000 tons of steam, provide 4 billion tons of Cooling and treat 1,000 million litres/day of Water and Waste.

THERMAX today is a major Engineering and Environment company with revenues of USD 800 million and with market capitalization of over USD 1 billion.

THERMAX was one of 20 Indian companies in Forbes list of "Asia's Best Under a Billion Companies" in 2005 and 2006 and was ranked "No. 1 among the top 21 wealth creators" in India over the last 5 years by a leading investment journal.

THERMAX brings to customers enriched experience of industrial applications, and expertise through technological partnerships and strategic alliances.

Operating from its Headquarters in Pune (Western India), Thermax has built an international sales & service network spread over South East Asia, Middle East, Africa, Russia, UK, US and China. It has full fledged ISO 9001:2000 and ISO 14000 accredited manufacturing setups.

Cooling & Heating Division - Cooling SBU

The Cooling SBU of THERMAX promotes Vapor Absorption Chillers as a cost effective and environment friendly alternative to electricity driven compression chillers.

It offers expert solutions in Process Chilling & Air Conditioning for industrial as well as commercial applications. Cooling SBU's strength lies in customized solutions as per the requirements of its customers.

Unlike electrical chillers, Absorption Chillers are powered by heat. These machines can run on a variety of heat sources, e.g. steam, hot water, liquid/gaseous fuels, exhaust gases and/or a combination of above.

Thermax - Conserving Energy, Preserving the Environment

Vapor Absorption Technology from Thermax is at work for clients in more than 50 industries including Pharmaceuticals, Chemicals, Fertilizers, Steel, Textiles, Petrochemicals, Food & Beverages and Automobile industries as well as in Hotels, Commercial Complexes, Shopping Complexes, Office Buildings, Educational Institutes, Airports, Cinema halls and Medical Centers.

Manufacturing capabilities of Thermax's Cooling SBU are confirmed by the fact that, over the years, Thermax has installed thousands of machines in more than 70 countries including USA, Brazil, Germany, Spain, UK, Italy, UAE, Saudi Arabia, India, China, Australia, Thailand, Philippines, Malaysia, Russia and Nigeria with the products conforming to the respective country standards like ETL, CE, TUV, DNV, ASME etc. Thermax has its fully owned subsidiaries namely Thermax Inc. in USA, Thermax Europe Limited in UK and Thermax (Zhejiang) Cooling and Heating Engg. Company Limited in China.

Thermax believes in efficient and responsive services to it's clients and exhibits in it's way of business, by giving optimal and quality solutions and achieving customer delight. Thermax has a worldwide sales, service and distribution network to fulfill the needs of it's valuable customers.

Manufacturing & Testing World-Class Facilities

Quality assured manufacturing to international codes

Thermax manufactures environment friendly and energy efficient vapor absorption chillers at its plants in Pune, India, and China. Its state-of-the-art manufacturing facility has been awarded with ISO 9001 and ISO 14001 certifications.

Stringent quality control procedures, along with a skilled workforce, ensure that a highly reliable product leaves the factory. The equipment and manufacturing processes conform to international standards.

Thermax's pressure part manufacturing has been approved by ASME and bears the 'S', 'U', 'H' and 'R' stamps. The vapor absorption chillers are CE certified for the European Union and ETL listed for the US and Canadian markets. They conform to the Kyoto Protocol and are in absolute tandem with the Clean Development Mechanism code (CDM).

Thermax also conforms to Environmental Management System standard 14001 and OHSAS 18001.

A Helium leak detection test ensures there is no leak at welding joints.

CNC gas cutting machine for plate cutting ensures precision cutting of shell plates and profile cut tube plates.

direct feed technology ensures fine tube hole finish and accuracy, which is important for leak tight expansion and effective heat transfer.

CNC twin spindle drilling machine with high speed and

Welding robot for high precision automatic welding.

Press Brake Machine

Rolling Machine

Advanced Series Flow Cycle

Advanced Series Flow Cycle to avoid simultaneous occurrence of high temperature and high concentration, thereby minimizing the probability of corrosion.

Parameter	Parallel Flow	Advanced Series Flow
HTG Temperature	162°C	155°C
LiBr Concentration	64 - 65%	60.5%
LTG Temperature	88°C	90°C
LiBr Concentration	62 - 64%	63%

Unique Two Stage Evaporation Technology

Thermax chillers are designed based on unique two stage evaporation technology. This ensures that the specific heat input is one of the lowest in the industry, resulting in higher cooling output for the same heat input. Also, larger temperature difference in chilled water to the tune of 30°C, is possible.

Split Absorber Design

Split absorber design helps to improve absorption rate of LiBr, thereby improving efficiency. This also reduces surface area under cold insulation.

Gravity Feed LiBr and Refrigerant Distribution Mechanism

Nozzle-less, non-clogging gravity feed distribution mechanism for stable and reliable operation throughout the life of the machine. Drop in performance due to nozzle wear, clogging eliminated. Need for separate pump for spray eliminated, resulting in lower power consumption.

Zero Crystallization

Unique State-of-the-Art concentration monitoring and control that virtually eliminates crystallization and is distinctly different from the conventional auto decrystallization. This helps the chiller to operate even at low cooling water inlet temperature without crystallisation.

Lowest Chilled Water/ Brine Outlet Temperature

Thermax innovative absorption chillers can deliver leaving chilled water temperatures down to 3.5°C and leaving chilled brine solution up to 0°C, enabling absorption chillers to be used for applications involving low chilled water / brine temperature.

Best-in-class Coefficient of Performance

Process design to ensure maximum internal Heat recovery to give the lowest fuel consumption benefit to the customer.

Avenues for COP improvement							
Enlargement of heat transfer area	Done by all manufacturers						
Two stage evaporation	Unique feature of Thermax chillers						
Advanced series flow	Design unique to Thermax chillers						
Refrigerant heat exchanger	Unique feature of Thermax chillers						

Stainless Steel Plate Heat Exchangers

All regenerative heat exchangers are high efficiency plate type heat exchangers with SS316 plates, for improved reliability & maximum internal heat recovery.

Isolation Valves for Canned Motor Pumps

Double seal isolation valves and bolted pumps facilitate easy maintenance of the machine mounted canned motor pumps without any loss of vacuum in the system. This significantly reduces the down time of the chiller.

Ferritic Stainless Steel Tubes in Generators

Titanium stabilized ferritic stainless steel tubes (SS430 Ti) used in low temperature generator for lowest differential thermal expansion, thereby protecting the tubes from stress corrosion cracking.

De-oxidised Low Phosphorus Copper Tubes

Copper tubes conforming to ASTM/JIS standards, with phosphorus content maintained below 0.005 ppm, used in chilled water and cooling water circuits. This protects the tubes from hydrogen embrittlement in LiBr environment.

Wet Back & Wet front Design

The fuel firing furnace has wet back and wet front design, eliminating the need of extensive refractory and preventing over heating of tube sheet and shell.

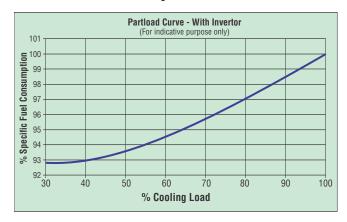


Improved Online Purge System

Factory fitted high efficiency purge system with purge cooler, continuously removes non-condensable gases from the chiller into the storage tank while in operation.

PLC Based Control Panel

Thermax chillers are provided with State-of-the-Art PLC based control panel, user friendly 7 inch touch screen operator interface and data logging system.


Non-clogging Filters to protect Solution Heat Exchangers

Stainless steel filters provided on both high temperature and low temperature generator outlet to safe guard the solution heat exchangers. Non-clogging design ensures uninterrupted circulation of lithium bromide, resulting in smooth operation.

Non-toxic Corrosion Inhibitor

New generation non-precipitating, non-toxic molybdenum based corrosion inhibitor which is more effective than conventional inhibitors based on Chromate (Cancer causing, prohibited in several countries) and Nitrate.

Variable Frequency Drive on Absorbent Pump

Variable Frequency Drive on absorbent pump for higher reliability, savings in fuel & savings in power, during part load operation.

Multi-stage Level Control

Multiple stage level control in three locations enables effective operation during part load and prevents cavitation of refrigerant and absorbent pumps.

BAS/DCS Connectivity

Direct connectivity of machine PLC panel with Third party monitoring systems like BAS (Building Automation System), DCS (Distributed Control System) or PLC (Programmable Logic Controller) can be provided via Modbus RTU protocol on RS485 network.

LiBr Absorption Chillers for Sub-Zero Cooling Applications

Double effect Lithium bromide absorption chillers can be offered for leaving brine temperatures as low as -5.0°C, offering great savings in operating costs.

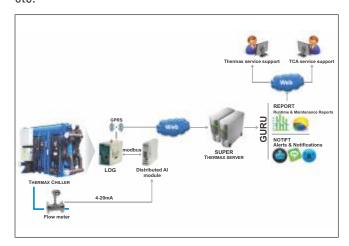
Hot Water for Heating

For catering to heating and cooling applications, this product can be upgraded to a chiller heater. Chiller heater is customized with dedicated heat exchanger which can provide hot water for heating applications, thereby eliminating the need of separate equipment for heating. This chiller heater can be configured to operate alternately on heating and cooling mode or for simultaneous heating and cooling operation.

Stand-by Pumps

For critical applications where scheduled maintenance of pumps cannot be carried out, stand-by absorbent, refrigerant and/or vacuum pump can be provided.

Fully Automatic Purging


The automatic purging system eliminates the need for periodic monitoring of purge tank pressure and operation of purge system.

Special Tube Metallurgy

Special tube materials like Cupro-Nickel, Stainless Steel or Titanium depending on water quality on site. This not only improves the reliability & efficiency but also makes the chiller suitable for special applications involving sea water and brackish water.

THERMMONITOR - Remote Performance Monitoring System (RPMS)

Advanced feature that monitors the chiller performance & provides data via internet. This feature enables the facility manager or Thermax engineer to monitor the performance remotely. It offers features like e-log book, status, trends, abnormal maintenance schedules, alerts etc.

Multi Sectional Shipment Arrangement

For convenience of shipping, the absorption chillers can be shipped in two or more sections depending upon the site requirement. This is particularly convenient arrangement for retrofit/replacement jobs.

Instrumentation and Safety Features

Holistic Customer Care

Cooling Unit of C&H division has a wide network of Service Centers throughout the globe to ensure quick response to customers. With a cumulative service experience of over 4000 VACs operating for more than 25 years, Thermax service personnel are equipped to deliver the right solution to the users. Thermax has developed specific modules for different types of users depending on their usage pattern, conforming to our proactive approach.

For the benefit of its customers Thermax offers various value added services like:

- Preventive maintenance contract
- Operations & manning
- Localized customer training programs

Testing Procedure

As the Vapor absorption chillers work under vacuum conditions, the manufacturing of these chillers is very critical with respect to leak tightness. Hence it is necessary to follow stringent quality control procedures and also perform leak detection test. Understanding the importance, Thermax carries out the leak detection test in the following sequence:

▶ Helium Shroud Test

In this test, the chiller is fully covered by a polythene sheet and helium is passed from below, to observe the cumulative leak rate of the entire chiller. It can detect leckage to the tune of 5.0×10^{-7} std cc/sec.

▶ Helium Spray Test

Helium, the next smallest molecule after Hydrogen, can leak through very minute holes. In this test helium is sprayed on all the joints of the chiller. As the chiller is under vacuum conditions, leakages, if any, will result in helium entering into the chiller and thus will be displayed on the screen of helium leak detector. Every machine has to clear this test before it is shipped to the customer

Performance Testing Facility

Thermax has a state-of-the-art test bay capable of testing various types of vapour absorption chillers - steam driven, hot water driven, fuel fired, exhaust driven and a combination of these up to a capacity of 3500 TR (12300 kW). The entire testing facility is centrally operated by sophisticated Distributed Control Systems (ABB make) and can be operated by the touch of a button.

Steam : 50 - 3500 TR (175 kW to 12300 kW)Exhaust : 50 - 3500 TR (175 kW to 12300 kW)

► Hot Water: 10 - 1730 TR (35 kW to 6080 kW)

► Fuel Fired : 50 - 3000 TR (175 kW to 10540 kW)

This is one of the largest testing facility for absorption chillers available in the world.

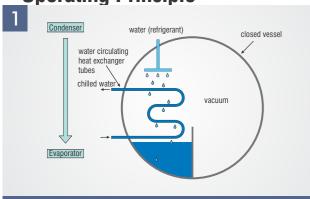
Specification Sheet

MODEL NUME	BER	UNITS	2V 2K C	2V 2L C	2V 2M C	2V 2N C	2V 3K C	2V 3L C	2V 3M C	2V 4K C	2V 4L C	2V 4M C	2V 5K C	2V 5L C	2V 5M C	2V 5N C	2V 6K C	2V 6L C	2V 7K C	2V 7L C	2V 7M C
Cooling Capacity		TR	120	143	182	217	269	304	360	397	451	502	550	610	717	802	904	1010	1180	1307	1439
0	Flow rate	m³/hr	72.4	86.3	109.8	130.9	162.3	183.4	217.2	239.5	272.0	302.8	331.8	368.0	432.5	483.8	545.3	609.2	711.8	788.4	868.0
Chilled Water	Pressure loss	m LC	1.2	1.4	3.7	4.4	4.1	4.5	7.3	6.3	6.4	6.9	6.7	6.8	5.2	5.3	9.8	10.0	4.3	4.6	4.9
Circuit	Connection Diameter	mm NB		125			150			200		200		2		50		350			
Cooling	Flow rate	m³/hr	120	143	182	217	269	304	360	397	451	502	550	610	717	802	904	1010	1180	1307	1439
Water	Pressure loss	m LC	2.3	2.5	6.4	6.7	6.2	6.4	5	4.1	4.4	4.7	4.1	4.3	5.5	5.7	7.7	8	7.2	7.8	8.4
Circuit	Connection Diameter	mm NB		1	50		200			250			300		350	,		400			
	Oil Consumption	kg/hr	27.5	32.6	41.6	49.4	61.2	68.9	81.9	90.7	102.7	114.3	125.3	139.0	163.0	182.2	205.7	229.6	268.9	298.5	328.6
Fuel Circuit	Gas Consumption	kW	350.5	415.3	530.7	629.1	779.9	878.6	1043.7	1155.9	1308.8	1456.7	1596.8	1771.4	2077.4	2322.0	2621.5	2926.1	3427.0	3804.3	4187.7
	Exhaust duct Diameter	mm NB	1	50	2	00		250			300		3	50	40	00		500			550
	Length	mm	29	905 3925		3985 4590		4700		4805		5855		7340		7475					
Overall Dimensions	Width	mm	2640		2545		2760 2795		3065		3295		3395		3585		4255				
	Height	mm	2785		2785		2890 2890		3150		3345		3440		3530		3900				
Weight	Maximum Shipping	x 1000 kg	8.5	8.6	10.4	10.8	12.1	12.4	14.0	16.9	17.4	17.7	19.9	20.4	24.9	26.0	31.0	31.9	42.7	43.7	44.6
weigiii	Operating	x 1000 kg	9.1	9.3	11.2	11.6	13.2	13.6	15.3	18.7	19.3	19.6	22.3	22.9	27.9	29.0	34.6	35.7	48.7	49.9	51.0
Clearance	Tube Cleaning / Removal	mm	3500			4100	4200		4200			4300 5300		5340		6800					
	Absorbent Pump Motor Rating	kW (A)		2.2	(6.0)			3.0 (8.0) 3.7(11.0) 5.5 (14.0) 6.6 (17.0)								6.6 (17.0)	7.5 (20.0) 9.0 (27.0)				
	Refrigerant Pump Motor Rating	kW (A)	0.3 (1.4)											1.5 (5)							
Electric Supply	Vacuum Pump Motor Rating	kW (A)		0.75(1.8)																	
	Burner Rating	kW (A		2.2	(5)		3.0 (6.1)	4.0 (8.0)		4.0 (8.7)			7.5 (14.7)			7.5 (15.2)	11.0 (22.8)		15.0 (29.7)		
	Total Electric Input	kVA		1	1.2	13.4 14.8 15.3 17.5 23.9 26.1 26.4							26.4	36.7			41.6	46.6			
	Power Supply		415 V(±10%), 50 Hz (±5%), 3 Phase+N																		

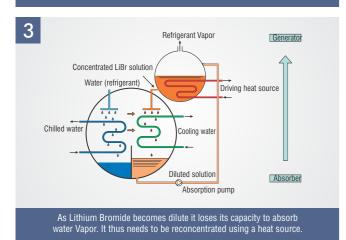
Notes: 1) Model Nos.: 2V XX C Direct fired Double effect Vapour Absorption Chiller

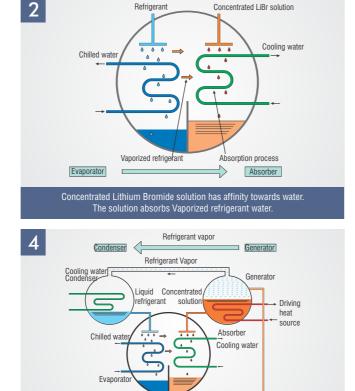
3) Cooling water inlet/ outlet temperature = 32/37.2°C

5) Minimum Cooling water inlet temperature is 10°C (For GD10A-10C CU - 20°C) 6) Ambient condition shall be between 5 to 45°C

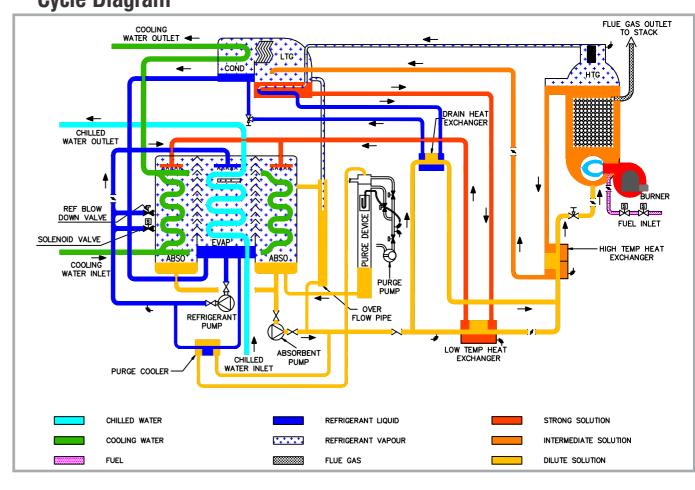

2) Chilled water inlet/ outlet temperature = 12/7°C

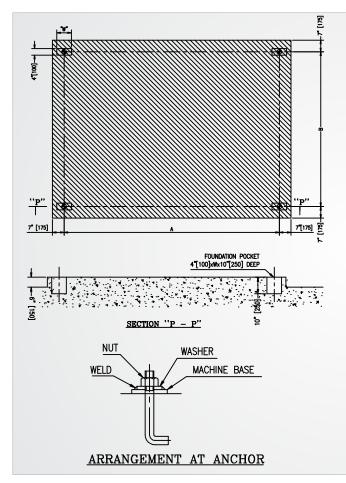
4) G.C.V. for Oil is 10960 kcal/kg


- 7) Maximum Allowable pressure in chilled/ cooling water system = 8 kg/cm²(g) 8) Control panel Electric Input = 1kVA)
- 9) All Water Nozzle connections to suit ASME B16.5 Class 150


- **10)** Technical specification is based on JIS B 8622
- 11) Please contact Thermax representative/ office for lower cooling water flow
 12) Please contact Thermax representative/ office for customized specifications

Operating Principle


When maintained at high vacuum, water will boil and flash cool itself.



Absorbent pump

Cycle Diagram

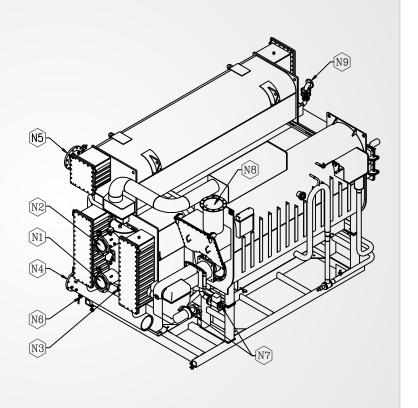
Foundation Drawing

MODEL NO.	A]	В	7	V	WEIGHT		
MODEL NO.	mm	Inch	mm	Inch	mm	Inch	TON	Pound	
2V 2K C	2146	84"	1757	69"	220	9"	9.0	19838	
2V 2L C	2146	84"	1757	69"	220	9"	9.2	20247	
2V 2M C	3166	125"	1803	71"	220	9"	10.9	24030	
2V 2N C	3166	125"	1803	71"	220	9"	11.5	25353	
2V 3K C	3166	125"	2002	79"	270	11"	13.1	28881	
2V 3L C	3166	125"	2002	79"	270	11"	13.5	29762	
2V 3M C	3774	149"	2029	80"	270	11"	15.2	33510	
2V 4K C	3774	149"	2270	89"	270	11"	18.3	40345	
2V 4L C	3774	149"	2270	89"	270	11"	19.0	41802	
2V 4M C	3774	149"	2270	89"	270	11"	19.4	42689	
2V 5K C	3774	149"	2468	97"	270	11"	22.0	48502	
2V 5L C	3774	149"	2468	97"	270	11"	22.7	50045	
2V 5M C	4774	188"	2621	103"	270	11"	28.0	61729	
2V 5N C	4774	188"	2621	103"	270	11"	28.9	63714	
2V 6K C	6226	246"	2774	109"	320	13"	34.6	76280	
2V 6L C	6226	246"	2774	109"	320	13"	35.8	78925	
2V 7K C	6226	246"	3431	135"	320	13"	48.7	107365	
2V 7L C	6226	246"	3431	135"	320	13"	50.1	110451	
2V 7M C	6226	246"	3431	135"	320	13"	51.4	113317	

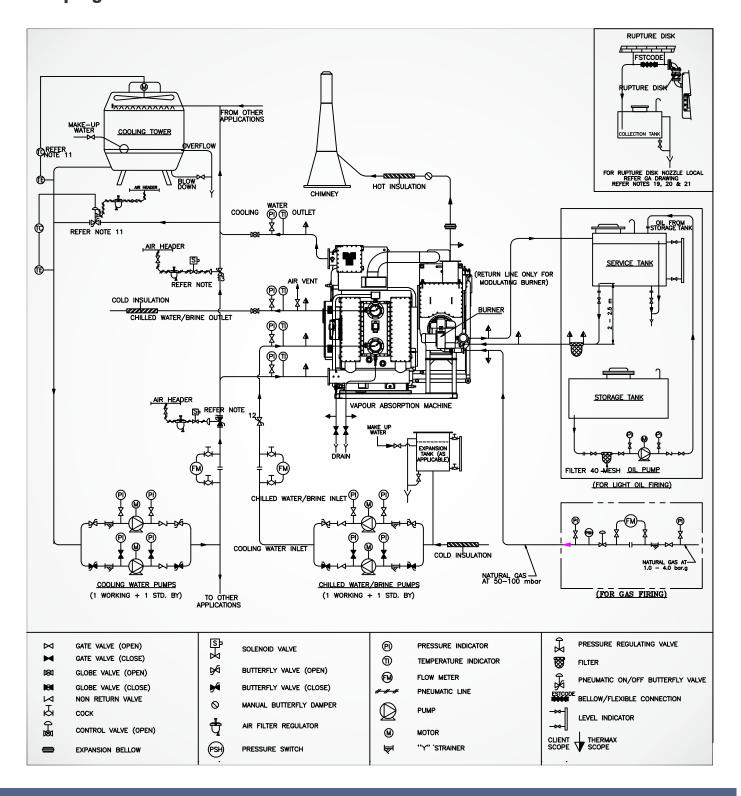
Notes:

- 1) There should be a drain ditch around the foundation.
- The floor surface should be made as water proof for ease of maintenance work.
- 3) Finish the foundation work horizontally flat & smooth at the horizontal grade of above 1/1000.
- 4) The foundation shall be designed to suit the soil conditions and other design considerations at site.

Typical Machine Illustration


	NOZZLE SCHEDULE							
NOZZLE	NOZZLE	DESCRIPTION						
INOZZEL	FL. RATING	DESCRIPTION						
N1	ASA 150	CHILLED WATER INLET						
N2	ASA 150	CHILLED WATER OUTLET						
N3	ı	CHILLED WATER DRAIN PLUG						
N4	ASA 150	COOLING WATER INLET						
N5	ASA 150	COOLING WATER OUTLET						
N6	ı	COOLING WATER DRAIN PLUG						
N7	ASA 150	FUEL INLET						
N8	ASA 150	FLUE GAS OUTLET						
N9	ASA 150	RUPTURE DISK OUTLET						

NOTES :


- 1) \$\indicates the Position of Anchor Bolts.
- 2) MINIMUM INSTALLATION CLEARANCE. CONTROL PANEL SIDE: 1250 mm (50") TOP: 200 mm (8")
- OTHERS: 500 mm (20")

 3) RUPTURE DISK OUTLET TO F
- 3) RUPTURE DISK OUTLET TO BE PIPED OUT ACCORDING TO LOCAL RULES AND REGULATIONS.

 MAXIMUM PIPING ELEVATION NOT TO EXCEED THE HEIGHT OF THE MACHINE.

Piping and Instrumentation Guidelines

Notes:

- Pressure reducing station should be installed on the gas supply line if the supply pressure is more than 100 m bar.
- The flue gas pressure at the outlet nozzle of machine is 0-5 mm WC. The flue gas ducting and chimney/ stack height should be designed considering this.
- Local regulations are to be strictly followed for chimney design, storage of fuels, emission of gases etc. Chimney discharge should be located at a sufficient distance away from cooling tower.
- 4. If same stack is used to discharge flue gas from more than one machine, provide automatic shut off damper on the flue gas outlet duct to prevent back flow of flue gases.
- 5. Automatic arrangements should be provided to stop cooling water flow through the machine, if the chilled water/brine flow stops.
- Maximum working pressure in water headers is 8.0 kg/cm²(g). This should be noted for design of chilled brine and cooling water system.

- Necessary arrangements to be made to maintain constant cooling water inlet temperature to chiller. Minimum allowable cooling water inlet temperature is 10°C.
- 8. Install automatic shut off valve on the cooling water inlet line, if cooling water pumps are not dedicated to the machine.
- 9. If cooling water pumps are dedicated to the machine and chilled water/ brine temperature is < 4.5°C install cooling water automatic shut off valve only on the bypass line between cooling water inlet and outlet.
- **10.** Rupture disk piping should be adequately supported. Use flexible connection to avoid any load on the rupture disk flange joint.
- 11. Rupture disk piping elevation should not exceed the rupture disk outlet
- **12.** Discharge from rupture disk should be collected to facilitate reuse. Else, drain the discharge safely as per local norms/ guidelines.

References

Refinery & Petrochemical

- Exxon Mobil, Saudi Arabia
- Reliance Industries, India
- Sipchem, Saudi Arabia
- IOCL, India

Metals

- Tata Steel, India
- Bhilai Steel Plant, India
- Concord Steel, Brazil
- Maklada Prestressed Steel, Tunisia

Pharmaceuticals

- Astrazeneca, UK
- Pfizer, India
- Johnson & Johnson, USA
- Glaxo Smithklime, India

Paper & Packaging

- Phoenix Pulp And Paper, Thailand
- BILT. India
- Double A Paper, Thailand
- TNPL, India

Food & Beverage

- Nestle, Philippines
- Cadbury, Nigeria
- Ferrero, Italy
- Coca Cola, India

Textile

- Envoy Textiles, Bangladesh
- Indorama, Thailand
- Raymonds, India
- Garden Silks, India

Chemical

- SFCCL, Saudi Arabia
- Aditya Birla Chemicals,
- Eka Chemicals, China
- Tata Chemicals, India

Commercial Centers

- BBC Studio, UK
- Revel Casino, USA
- Henry Ford Museum, USA
- Lotus TESCO. Thailand

Contact Us

THERMAX

Sustainable Solutions in **Energy & Environment**

Cooling & Heating Division

D-13 MIDC Chinchwad, Pune 411 019, India. Tel.: +91 -20-2747 5941 Fax: +91-20-27475907 Email: cooling@thermaxindia.com Website: www.thermaxindia.com

Customer: 1800 2090 115

Mumbai: Tel: (022) 67542222, Fax: (022) 22040859 Ahmedabad: Tel: (079) 26575408, Fax: (079) 26577270 Savli (Vadodara): Tel: (02667) 264727, Fax: (02667) 264728 New Delhi: Tel: (011) 46087200, Fax: (011) 26145311 Chennai: Tel: (044) 24303400, Fax: (044) 24353841 Bangalore: Tel: (080) 22371721, Fax: (080) 22371726 Hyderabad: Tel: (040) 23310254, Fax: (040) 23312335 Kolkata: Tel: (033) 22826711-3, Fax: (033) 22826796

OVERSEAS OFFICES

Thermax Inc., USA:

Tel: +1-248-207-9959, Fax: +1-248-468-0546 Email: dinesh@thermax-usa.com, www.thermax-usa.com

Thermax Europe Ltd., UK:

Tel: +44-1908-378914, Fax: +44-1908-379487

Email: dinesh@thermax-europe.com, www.thermax-europe.com

Thermax (Zhejiang) Cooling & Heating Engg. Company Ltd. - China. Tel: +86-18-667375588, Fax: +86-21-64483997 Email: vbalasub@thermax-china.com, www.thermax-china.com

Thermax Ltd. Russia

Tel: +7-495-434-30-41, Fax: +7-495-434-46-58 Email: vikastripathi@thermaxindia.com

Thermax Ltd.. UAE:

Tel: +971-4-8816481, Fax:+971-4-8816039 Email: navas@thermaxme.com, mohsin.pathan@thermaxindia.com

Thermax Ltd, Saudi Arabia

Tel: +966 55533 9762

Email: mohsin.pathan@thermaxindia.com,

navas@thermaxme.com

Thermax Ltd, Kenya

Tel: +254-726 729812, Fax: +254-20-4451919

Email: nawzar@yahoo.com, mohsin.pathan@thermaxindia.com

Thermax Ltd, Nigeria

Tel: +254-726 729812 , Fax : +254-20-4451919

Email:nawzar@yahoo.com, mohsin.pathan@thermaxindia.com

Thermax Ltd. Thailand

Tel: +628159803103, Email: bharat@thermaxindonesia.co.id

Thermax Ltd. Malaysia

Tel: +628159803103, Email: bharat@thermaxindonesia.co.id Thermax Ltd. Indonesia

Tel: +628159803103, Email: bharat@thermaxindonesia.co.id

Thermax Ltd, Philippines Tel: +628159803103, Email: bharat@thermaxindonesia.co.id

Thermax Ltd, Bangladesh

Tel: +88-01-912008883, Email: mvreddy@citech-bd.com Thermax Ltd, Sri Lanka

Tel: +91 98500 80012. Email: harishr@thermaxindia.com

Thermax Business Portfolio

Water & Waste Solutions

Air Pollution Control

Chemicals

Boilers & Heaters

Absorption Cooling

www.thermaxindia.com